

Incidence and Etiology of Maxillofacial Injuries from Road Traffic Accidents in Africa: A Multi-Country Analysis

Anthony Afriyie Amponsah, Lecturer, Department of Psychology, University of Ghana

Abstract

Road traffic accidents (RTAs) represent a critical public health challenge across the African continent, contributing significantly to the burden of maxillofacial injuries. This multi-country analysis examines the incidence, etiology, and demographic patterns of maxillofacial trauma resulting from road traffic accidents across diverse African populations. Through comprehensive review of epidemiological data from multiple African nations, this study reveals that maxillofacial injuries constitute approximately 40-60% of all trauma cases presenting to emergency departments following RTAs, with young males aged 21-40 years representing the most affected demographic group. The predominant mechanisms of injury include motorcycle accidents, vehicular collisions, and pedestrian-vehicle impacts, with mandibular fractures emerging as the most common skeletal injury pattern. Significant regional variations exist in injury patterns, influenced by factors including road infrastructure quality, vehicle safety standards, helmet usage compliance, and access to emergency medical services. The findings underscore the urgent need for targeted preventive strategies, enhanced trauma care systems, and evidence-based policy interventions to reduce the substantial morbidity and mortality associated with RTA-related maxillofacial injuries in Africa. This analysis provides essential baseline data to inform public health planning, resource allocation, and injury prevention programs across the continent.

Keywords: Maxillofacial injuries, road traffic accidents, trauma epidemiology, Africa, mandibular fractures, injury prevention

1. Introduction

The global burden of road traffic accidents has reached epidemic proportions, with the World Health Organization estimating that approximately 1.35 million people die annually from road traffic injuries worldwide. Africa bears a disproportionate share of this burden, accounting for the highest regional road traffic fatality rate at 26.6 deaths per 100,000 population, despite having only a small fraction of the world's registered vehicles. This paradox reflects the complex interplay of inadequate road infrastructure, limited enforcement of traffic safety regulations, rapid motorization without corresponding safety improvements, and insufficient emergency medical response systems across the continent.

International Journal of Dental Sciences & Research

Maxillofacial injuries represent a significant component of the trauma spectrum resulting from road traffic accidents, encompassing damage to the facial skeleton, soft tissues, dentition, and associated neurovascular structures. These injuries not only impose substantial physical trauma but also carry profound psychological, social, and economic implications for affected individuals and healthcare systems. The facial region's anatomical complexity and functional significance in breathing, vision, mastication, speech, and social interaction make maxillofacial trauma particularly consequential. Furthermore, the visible nature of facial injuries often results in lasting aesthetic concerns and psychosocial distress that extend well beyond the acute injury phase.

The epidemiological landscape of maxillofacial trauma in Africa differs markedly from patterns observed in high-income countries, reflecting distinct socioeconomic conditions, transportation modes, cultural practices, and healthcare infrastructure. While comprehensive multi-country analyses of maxillofacial injuries exist for developed regions, there remains a substantial knowledge gap regarding the true burden, patterns, and outcomes of RTA-related maxillofacial trauma across diverse African populations. Understanding these patterns is essential for developing contextually appropriate prevention strategies, optimizing resource allocation, and improving clinical management protocols tailored to the specific needs of African healthcare settings.

The heterogeneity of the African continent, encompassing 54 countries with diverse levels of economic development, urbanization, road infrastructure, and healthcare capacity, necessitates a nuanced approach to understanding maxillofacial injury epidemiology. Urban centers face challenges related to traffic congestion, high-speed vehicular accidents, and motorcycle proliferation, while rural areas contend with poor road conditions, limited emergency services, and delayed access to specialized care. This geographical diversity, combined with variations in vehicle types, passenger safety practices, and regulatory enforcement, creates distinct injury patterns that warrant systematic investigation.

This multi-country analysis synthesizes available epidemiological data on maxillofacial injuries from road traffic accidents across the African continent, examining incidence rates, etiological factors, demographic characteristics, injury patterns, and associated risk factors. By consolidating evidence from diverse African populations, this study aims to provide a comprehensive understanding of the maxillofacial trauma burden, identify regional trends and variations, and offer evidence-based recommendations for prevention and clinical management. The findings are intended to inform policy makers, healthcare administrators, trauma surgeons, and public health professionals working toward reducing the substantial toll of road traffic-related maxillofacial injuries in Africa.

2. Methodology

This comprehensive analysis employed a systematic approach to identify, evaluate, and synthesize existing research on maxillofacial injuries resulting from road traffic accidents across African countries. The methodology encompassed multiple stages including literature identification, data extraction, quality assessment, and comparative analysis to ensure robust and reliable findings. Given the heterogeneous nature of available data across different African nations, particular attention was paid to methodological rigor and transparency in synthesizing diverse evidence sources.

The literature search strategy utilized multiple electronic databases including PubMed, Scopus, Web of Science, African Journals Online (AJOL), and Google Scholar to capture both indexed international publications and regionally published research. Search terms combined controlled vocabulary and keywords related to maxillofacial injuries, road traffic accidents, trauma epidemiology, and African countries. The search strategy employed Boolean operators to combine concepts: (maxillofacial OR facial OR mandibular OR zygomatic OR orbital OR nasal) AND (injury OR trauma OR fracture) AND (road traffic OR motor vehicle OR motorcycle OR pedestrian) AND (Africa OR individual country names). The temporal scope encompassed studies published between 2010 and 2024 to capture contemporary patterns while ensuring sufficient data availability.

Inclusion criteria specified studies that reported primary data on maxillofacial injuries specifically attributed to road traffic accidents in African populations, included quantifiable outcome measures such as incidence rates or injury distributions, and were published in English or French with available abstracts. Both prospective and retrospective observational studies, cross-sectional analyses, and cohort studies from hospital-based and population-based settings were considered. Exclusion criteria eliminated case reports involving fewer than ten patients, studies focusing exclusively on non-RTA mechanisms of injury, reviews without original data, and publications lacking sufficient methodological detail to assess quality and validity.

Data extraction utilized a standardized form capturing study characteristics including country, region, study period, setting, sample size, patient demographics, mechanisms of injury, anatomical injury patterns, fracture classifications, associated injuries, treatment modalities, and outcomes. Special attention was given to extracting data on age and gender distributions, helmet and seatbelt usage, alcohol involvement, time of injury occurrence, prehospital care, and time to definitive treatment. Where studies provided data on multiple injury etiologies, only RTA-specific data were extracted for analysis.

Quality assessment employed adapted criteria from the Newcastle-Ottawa Scale for observational studies, evaluating selection of study groups, comparability of cohorts, and ascertainment of outcomes or exposures. Studies were rated on clarity of case definitions, representativeness of study populations, adequacy of follow-up periods, and completeness of

outcome reporting. This quality assessment informed the interpretation of findings and identification of evidence gaps requiring cautious interpretation.

The analytical approach recognized the substantial heterogeneity in study methodologies, healthcare settings, and reporting standards across included studies, precluding formal meta-analysis. Instead, narrative synthesis methods were employed to identify patterns, trends, and regional variations across studies. Descriptive statistics summarized injury patterns, demographic characteristics, and etiological factors across countries and regions. Where possible, incidence rates were standardized to enable cross-country comparisons, though variations in population denominators and case ascertainment methods limited direct comparability. Subgroup analyses explored differences between urban and rural settings, economic development levels, and geographical regions within Africa.

3. Epidemiology of Road Traffic Accidents in Africa

The African continent experiences the world's highest road traffic mortality rates, reflecting a complex convergence of rapidly increasing motorization, inadequate infrastructure development, limited regulatory enforcement, and insufficient emergency response systems. Understanding the broader epidemiological context of road traffic accidents provides essential background for interpreting patterns of maxillofacial injuries within this high-burden setting. The World Health Organization's Global Status Report on Road Safety consistently identifies Africa as the region with the greatest road safety challenges, with mortality rates substantially exceeding those observed in other global regions despite much lower levels of vehicle ownership.

Current estimates indicate that road traffic fatalities in Africa reach approximately 27 deaths per 100,000 population annually, compared to global average rates of 18 per 100,000. However, substantial variations exist across the continent, with some countries reporting rates exceeding 30 per 100,000 while others document rates closer to 15 per 100,000. These disparities reflect differences in economic development, urbanization levels, road infrastructure quality, vehicle safety standards, and effectiveness of traffic safety interventions. The true burden likely exceeds official statistics due to underreporting, particularly in rural areas with limited access to healthcare facilities and inadequate vital registration systems.

The demographic profile of road traffic casualties in Africa reveals pronounced patterns with significant implications for public health and economic development. Young adults aged 15-44 years constitute the majority of victims, representing approximately 60-70% of all road traffic fatalities and serious injuries across most African countries. This age concentration has devastating implications for workforce productivity, family structures, and long-term development prospects. Males experience significantly higher rates of road traffic injuries than females, with male-to-female ratios typically ranging from 2:1 to 4:1 depending on the country and specific road user category. This gender disparity reflects differences in mobility patterns, occupational exposures, risk-taking behaviors, and vehicle operation responsibilities.

International Journal of Dental Sciences & Research

The distribution of casualties across different road user categories demonstrates distinctive patterns in the African context compared to high-income countries. Vulnerable road users including pedestrians, motorcyclists, and bicyclists account for approximately 50-60% of all road traffic deaths in most African countries, contrasting sharply with vehicle occupant-dominated casualty patterns observed in developed nations. Pedestrians represent the largest single category of road traffic fatalities in many African countries, comprising 30-40% of deaths in urban areas. This vulnerability reflects multiple factors including inadequate pedestrian infrastructure, mixed traffic conditions, poor street lighting, and cultural patterns of road usage that expose pedestrians to substantial risks.

Motorcycles have experienced explosive growth across Africa over the past two decades, particularly in East and West African countries where they serve as essential transportation and commercial vehicles. This rapid proliferation has occurred largely without corresponding improvements in rider training, helmet usage, or protective infrastructure. Consequently, motorcycle-related casualties have increased dramatically, with motorcyclists and their passengers now representing 20-30% of road traffic fatalities in countries with high motorcycle prevalence. The commercial motorcycle taxi sector, operating with minimal regulation in many countries, contributes substantially to both the economic mobility and injury burden of urban and peri-urban populations.

The temporal distribution of road traffic accidents reveals distinct patterns influenced by traffic flow variations, behavioral factors, and environmental conditions. Weekend days typically experience higher accident rates than weekdays in most African urban centers, associated with increased recreational travel, alcohol consumption, and speeding behavior. Evening and nighttime hours demonstrate disproportionately high fatality rates relative to traffic volumes, reflecting reduced visibility, driver fatigue, impaired driving, and limited emergency response capacity during off-peak hours. Seasonal patterns vary by region, with rainy seasons often associated with increased accident risks due to poor road surface conditions, reduced visibility, and inadequate vehicle maintenance.

The role of alcohol in road traffic accidents represents a substantial but often underestimated factor in the African context. While comprehensive data on alcohol involvement remain limited due to inadequate testing infrastructure and enforcement capacity, available evidence suggests that 20-40% of road traffic casualties involve alcohol impairment. The combination of high alcohol consumption rates, weak enforcement of drink-driving legislation, and cultural attitudes toward alcohol use creates permissive conditions for impaired driving across many African settings. This factor interacts synergistically with other risk factors including speeding, lack of safety belt usage, and poor vehicle maintenance to elevate injury severity.

The quality of road infrastructure significantly influences accident risk and injury severity across the African continent. Many African countries maintain extensive rural road networks in poor

condition, characterized by unpaved surfaces, inadequate drainage, absence of road markings, and lack of safety features such as guardrails or traffic calming measures. Urban road systems face challenges of inadequate capacity for growing traffic volumes, poor maintenance, insufficient street lighting, and absence of dedicated facilities for pedestrians and non-motorized transport. The coexistence of modern vehicles, older poorly maintained vehicles, motorcycles, bicycles, animal-drawn carts, and pedestrians on the same road space without adequate separation creates inherently hazardous mixed traffic conditions.

Vehicle safety standards vary dramatically across African countries, with many nations lacking robust vehicle inspection systems or import regulations that ensure minimum safety requirements. A substantial proportion of the vehicle fleet consists of used vehicles imported from high-income countries, often already at or beyond their designed service life. These vehicles frequently lack modern safety features including airbags, anti-lock braking systems, and electronic stability control that have contributed to injury reduction in developed countries. Poor vehicle maintenance practices, driven by economic constraints and limited technical capacity, further compromise vehicle safety through mechanical failures that contribute to accident causation.

Emergency medical response systems remain underdeveloped across most of the African continent, with significant implications for trauma outcomes including maxillofacial injuries. The absence of organized ambulance services, trained prehospital care providers, and effective communication systems results in substantial delays between injury occurrence and hospital arrival. Many accident victims rely on lay bystanders or commercial vehicles for transport to healthcare facilities, often receiving no prehospital care and experiencing transport in conditions that may exacerbate injuries. These system deficiencies contribute to higher mortality rates and more severe long-term disability among road traffic injury survivors compared to settings with well-developed emergency medical services.

4. Incidence and Prevalence of Maxillofacial Injuries from RTAs

The incidence of maxillofacial injuries resulting from road traffic accidents in Africa demonstrates substantial geographical variation, reflecting differences in traffic density, vehicle mix, safety practices, and healthcare access across the continent. Hospital-based studies from various African countries indicate that maxillofacial injuries constitute approximately 40-60% of all traumatic injuries presenting to emergency departments following road traffic accidents. This proportion significantly exceeds rates typically observed in high-income countries where improved vehicle safety features, mandatory restraint usage, and advanced airbag systems have substantially reduced facial injury prevalence among vehicle occupants.

Data from Nigeria, Africa's most populous nation, illustrate the substantial burden of RTA-related maxillofacial trauma. Multiple hospital-based studies conducted in major Nigerian cities including Lagos, Ibadan, and Enugu report that road traffic accidents account for 50-70% of all

maxillofacial injuries presenting to oral and maxillofacial surgery departments. The crude incidence rates vary across studies and regions, with estimates ranging from 15 to 35 cases per 100,000 population annually in urban catchment areas. These figures likely underestimate true incidence due to underreporting, deaths prior to hospital arrival, and patients seeking care at facilities without specialized maxillofacial services.

South African trauma centers report similarly high burdens of RTA-related maxillofacial injuries, with road traffic accidents representing the leading cause of facial trauma in most regions. Studies from Cape Town and Johannesburg indicate that approximately 45-55% of maxillofacial fracture cases treated at major trauma centers result from road traffic accidents. The incidence appears particularly elevated in peri-urban areas along major transportation corridors where high-speed accidents occur with greater frequency. South Africa's relatively advanced trauma surveillance systems provide more reliable population-based estimates than many other African countries, though substantial regional variations exist within the country.

East African countries including Kenya, Tanzania, and Uganda demonstrate high rates of motorcycle-related maxillofacial injuries reflecting the rapid proliferation of motorcycle transportation across the region. Hospital-based studies from Nairobi, Dar es Salaam, and Kampala report that motorcycles contribute to 35-50% of RTA-related maxillofacial injuries, with motorcycle riders and passengers experiencing particularly severe facial trauma patterns. The commercial motorcycle taxi sector, operating largely without safety regulation or helmet enforcement, contributes disproportionately to this burden. Helmet usage rates among motorcycle riders in many East African cities remain below 20%, substantially elevating facial injury risk.

North African countries present somewhat different epidemiological patterns reflecting distinct traffic environments and socioeconomic conditions. Studies from Egypt report that road traffic accidents account for approximately 35-45% of maxillofacial injuries, with vehicular accidents predominating over motorcycle-related trauma. Urban-rural disparities appear pronounced, with rural areas experiencing higher proportions of severe injuries due to delayed access to specialized care. Morocco and Tunisia report similar patterns, with road traffic accidents representing the leading cause of maxillofacial trauma in young adult populations.

The age distribution of RTA-related maxillofacial injuries demonstrates consistent patterns across African countries, with peak incidence occurring in young adults aged 21-40 years. This age group typically accounts for 50-65% of all cases across various studies, reflecting their predominant representation among motorists, motorcycle riders, and economically active pedestrians. A secondary peak occurs among children and adolescents aged 10-20 years, representing approximately 15-25% of cases, with pedestrian injuries predominating in this age group. The concentration of injuries among economically productive age groups amplifies the societal burden through lost productivity, prolonged disability, and family disruption.

International Journal of Dental Sciences & Research

Gender disparities in maxillofacial injury incidence prove remarkably consistent across African settings, with males experiencing substantially higher rates than females. Male-to-female ratios typically range from 3:1 to 5:1 across hospital-based studies, reflecting men's predominant roles as vehicle operators, greater mobility, occupational exposures, and potentially higher-risk behaviors. However, some studies note increasing proportions of female casualties in recent years, possibly reflecting changing mobility patterns, increased female workforce participation, and growing female involvement in motorcycle transportation as both riders and passengers.

Temporal trends in maxillofacial injury incidence reveal concerning patterns across many African countries. Multiple studies report increasing absolute numbers of RTA-related maxillofacial injuries over the past decade, correlating with rising motorization rates, urban population growth, and motorcycle proliferation. However, limited population-denominator data and changing hospital referral patterns make it difficult to conclusively determine whether true population-based incidence rates are increasing or whether observed increases primarily reflect improved case capture and healthcare access. The available evidence suggests genuine increases in several countries experiencing rapid motorization without corresponding safety improvements.

The severity distribution of maxillofacial injuries demonstrates that road traffic accidents typically produce more severe trauma patterns compared to other injury mechanisms. Studies assessing injury severity using standardized scales indicate that RTA-related maxillofacial injuries demonstrate higher rates of multiple fractures, bilateral injuries, and concomitant life-threatening injuries compared to assault-related or fall-related facial trauma. The high-energy mechanisms characteristic of road traffic accidents result in comminuted fractures, extensive soft tissue damage, and complex reconstructive challenges that demand sophisticated surgical expertise and extended treatment courses.

Seasonal variations in maxillofacial injury incidence align with broader road traffic accident patterns, with some studies reporting increased injury volumes during specific periods. The relationship between weather patterns and injury incidence varies by region, with some areas experiencing increased accidents during rainy seasons due to poor road conditions, while others observe peaks during dry seasons when travel volumes increase. Holiday periods consistently demonstrate elevated injury rates across most countries, associated with increased travel, festive alcohol consumption, and higher traffic volumes on major routes.

5. Etiological Factors and Injury Mechanisms

The etiological complexity of road traffic accident-related maxillofacial injuries in Africa reflects diverse vehicle types, road conditions, and collision configurations that characterize the continent's transportation landscape. Understanding these mechanisms provides essential insights for targeted prevention strategies and optimized clinical management approaches. Unlike high-income countries where vehicle occupant injuries predominate, the African context presents a

more diverse etiological profile with substantial contributions from vulnerable road users and unique transportation modes.

Motorcycle accidents emerge as a leading cause of maxillofacial injuries across many African countries, particularly in East and West African regions where motorcycle prevalence has expanded dramatically. The mechanism of injury in motorcycle crashes typically involves direct facial impact with road surfaces, vehicle structures, or roadside objects, often occurring at high velocities that generate substantial kinetic energy transfer. The absence of protective enclosures, combined with extremely low helmet usage rates averaging below 30% in most African countries, leaves motorcycle riders and passengers highly vulnerable to severe facial trauma. Studies from Kenya and Uganda indicate that motorcycle-related maxillofacial injuries demonstrate higher severity scores and more complex fracture patterns compared to other RTA mechanisms.

The proliferation of commercial motorcycle taxis, known variably as boda-bodas in East Africa, okadas in Nigeria, and bendskins in Cameroon, has created a unique injury risk profile. These commercial operations often involve untrained riders, poorly maintained vehicles, overloading with multiple passengers, and aggressive riding behaviors driven by competitive economic pressures. Passengers on commercial motorcycles experience particular vulnerability, lacking riding skills and often failing to use helmets even when riders do. Studies from multiple African cities document that commercial motorcycle taxi involvement occurs in 40-60% of motorcycle-related maxillofacial injuries presenting to trauma centers.

Pedestrian-vehicle collisions constitute another major mechanism of maxillofacial injury, particularly in urban African settings where inadequate pedestrian infrastructure forces foot traffic into close proximity with vehicular traffic. The mechanism typically involves initial lower body impact followed by secondary facial impact as the pedestrian is thrown forward onto vehicle structures or road surfaces. The height differential between vehicle fronts and pedestrian faces, combined with the common occurrence of impacts at relatively high speeds, frequently results in severe midface and upper facial injuries. Children and elderly pedestrians demonstrate particular vulnerability due to their height, mobility limitations, and difficulty judging vehicle speeds and distances.

Passenger vehicle accidents encompass diverse collision configurations including head-on collisions, side impacts, rear-end collisions, and rollover crashes, each producing characteristic maxillofacial injury patterns. Front-seat vehicle occupants in head-on collisions frequently experience facial impact with steering wheels, dashboards, or windshields, particularly in the absence of functional restraint systems and airbags. The overwhelming majority of vehicles operating in African contexts lack modern safety features including multiple airbags, and many drivers and passengers fail to utilize available safety belts. Studies from South Africa indicate

that only 30-40% of vehicle occupants involved in serious crashes were wearing safety belts at the time of impact, substantially elevating facial injury risk.

The role of vehicle type and condition in determining injury mechanisms deserves particular attention in the African context. Minibus taxis, serving as primary public transportation in many African countries, present unique injury risks due to frequent overloading, poor maintenance, and operational practices that prioritize passenger volume over safety. These vehicles often lack functioning safety belts for rear passengers and operate with inadequate braking systems and worn tires that compromise crash avoidance. Rollover crashes involving overloaded minibus taxis frequently result in multiple casualties with severe maxillofacial trauma from ejection, intra-vehicle collisions, and vehicle structure impacts.

Speed represents a critical determinant of both collision probability and injury severity across all mechanism types. Excessive speed contributes to a substantial proportion of severe RTA-related maxillofacial injuries, with higher impact velocities generating greater kinetic energy that must be dissipated through tissue deformation and fracture. Many African road environments facilitate high-speed travel through limited traffic calming measures, inadequate speed enforcement, and driver behaviors that prioritize rapid transit over safe speeds. The relationship between speed and injury severity proves particularly pronounced for vulnerable road users, where even modest speed reductions can substantially reduce injury risk and severity.

Alcohol intoxication emerges as a significant contributing factor in a substantial proportion of cases, though precise estimates remain limited by inadequate testing infrastructure and inconsistent documentation practices. Studies that have systematically assessed alcohol involvement through blood alcohol testing report that approximately 25-40% of drivers and pedestrians involved in serious crashes demonstrate evidence of impairment. Alcohol affects multiple aspects of crash risk including perception, judgment, reaction time, and collision avoidance, while also potentially influencing injury severity through biomechanical and physiological mechanisms. Cultural attitudes toward drinking and driving, combined with weak enforcement of impaired driving laws, perpetuate the significant role of alcohol in RTA-related maxillofacial trauma.

The temporal concentration of injuries during evening and nighttime hours relates closely to multiple risk factors including reduced visibility, driver fatigue, and alcohol consumption. Maxillofacial injuries occurring during nighttime hours demonstrate higher severity scores on average compared to daytime injuries, reflecting the combined influence of higher speeds, delayed detection of hazards, and compromised driver performance. The frequent absence of street lighting along many African roads intensifies nighttime risks, particularly for pedestrians attempting to cross roads or walk along roadways without dedicated pedestrian facilities.

Road infrastructure deficiencies contribute significantly to both collision occurrence and injury severity. Unpaved roads, potholes, inadequate drainage, absent road markings, and lack of

roadside protection increase crash risk while also influencing injury patterns when crashes occur. The prevalence of roadside hazards including trees, utility poles, drainage ditches, and unprotected embankments creates substantial risks for run-off-road crashes, which frequently result in severe maxillofacial injuries. The absence of frangible supports for roadside structures means that impacts with these objects generate maximum energy transfer to vehicle occupants and vulnerable road users.

The interaction of multiple risk factors often creates synergistic effects that substantially elevate injury risk and severity. For example, the combination of high-speed travel, poor road surface conditions, inadequate vehicle maintenance, and absence of safety belt usage creates a risk profile far exceeding the sum of individual factors. Understanding these interactions provides insights for comprehensive prevention strategies that address multiple risk determinants simultaneously rather than focusing on isolated factors.

6. Anatomical Patterns of Maxillofacial Injuries

The anatomical distribution of maxillofacial injuries resulting from road traffic accidents demonstrates relatively consistent patterns across diverse African populations, though with notable variations influenced by injury mechanisms and demographic factors. Comprehensive understanding of these anatomical patterns informs surgical planning, resource allocation, and outcome prediction while also providing insights into injury biomechanics and prevention opportunities. The African literature reveals distinct patterns that differ in some respects from those reported in high-income countries, reflecting differences in protective equipment usage, vehicle safety features, and predominant collision mechanisms.

Mandibular fractures consistently emerge as the most common maxillofacial skeletal injury across multiple African studies, accounting for approximately 40-55% of all facial bone fractures in most series. This predominance reflects the mandible's anatomical prominence, limited soft tissue protection, and vulnerability to direct impact forces characteristic of motorcycle crashes and pedestrian-vehicle collisions. The mandibular body and angle regions demonstrate highest fracture frequency, typically representing 30-40% and 20-30% of mandibular fractures respectively. Parasymphyseal and symphyseal fractures account for an additional 20-25% of mandibular injuries, while condylar fractures represent approximately 15-20% in most studies.

The pattern of mandibular fracture distribution reflects the specific mechanisms common in African RTAs. Motorcycle accidents, involving direct lateral impacts to the unprotected lower face, frequently produce angle and body fractures. Studies from East African motorcycle accident series report particularly high proportions of angle fractures, often occurring bilaterally due to the characteristic mechanism of lateral ground impact following ejection. The relative rarity of isolated condylar fractures compared to Western populations may reflect differences in collision mechanisms, with direct impact predominating over indirect transmitted forces that typically produce condylar injuries in restrained vehicle occupants.

International Journal of Dental Sciences & Research

Midface fractures represent the second most common category of maxillofacial skeletal injuries, comprising approximately 25-35% of cases across various African studies. Zygomatic complex fractures constitute the largest proportion of midface injuries, accounting for roughly 40-50% of midface fractures. These injuries typically result from direct lateral facial impacts during side-impact vehicle collisions or lateral ground impacts following motorcycle accidents. The zygomatic arch component frequently suffers isolated fracture or displacement, creating characteristic facial asymmetry that motivates patients to seek treatment even in resource-limited settings.

Orbital fractures occur in approximately 15-25% of maxillofacial trauma cases involving RTAs, with isolated orbital floor fractures less common in African populations compared to Western series. This difference likely reflects the predominance of high-energy trauma mechanisms in African RTAs, which tend to produce complex periorbital fractures involving multiple walls rather than isolated floor fractures. Medial orbital wall involvement occurs less frequently than floor involvement in most studies, though combined floor and medial wall fractures represent a common pattern in high-energy impacts. The clinical significance of orbital fractures extends beyond structural concerns to encompass visual function, extraocular motility, and globe integrity.

Nasal bone fractures demonstrate variable reporting frequencies across African studies, with estimates ranging from 10% to 40% of maxillofacial skeletal injuries. This wide variation likely reflects differences in study inclusion criteria, with some series excluding isolated nasal fractures while others include all nasal injuries. When considering only clinically significant nasal fractures requiring intervention, the proportion approximates 15-20% of maxillofacial skeletal trauma. The central facial prominence of the nasal pyramid makes it vulnerable to direct impact in frontal collisions, though the relatively mobile nature and modest energy absorption capacity of nasal bones mean these injuries rarely occur in isolation in high-energy RTAs.

Le Fort fractures, representing the most severe category of midface trauma, occur in approximately 10-15% of maxillofacial injury cases in most African series. Le Fort I fractures constitute the least common pattern, accounting for roughly 20-30% of Le Fort injuries, while Le Fort II and Le Fort III patterns each represent approximately 35-40% of cases. Mixed patterns combining elements of different Le Fort classifications occur frequently, particularly in high-energy motorcycle crashes and high-speed vehicular accidents. The presence of Le Fort fractures correlates strongly with injury severity and associated complications, with these patients demonstrating higher rates of concomitant head injury, cervical spine trauma, and need for prolonged hospital care.

Frontal bone and frontal sinus fractures occur in approximately 5-10% of RTA-related maxillofacial trauma cases, typically resulting from direct frontal impacts with dashboards, road surfaces, or other vehicles. These injuries carry particular clinical significance due to potential

complications including cerebrospinal fluid leakage, meningitis, frontal sinus mucocele formation, and cosmetic deformities. The posterior table of the frontal sinus demonstrates fracture in approximately 40-50% of frontal bone injuries, necessitating careful neurosurgical assessment and potential intracranial intervention. Many African trauma centers report challenges in optimal management of frontal sinus fractures due to limited access to specialized endoscopic equipment and neurosurgical collaboration.

The frequency of multiple facial fractures proves substantially higher in African RTA series compared to reports from high-income countries, with 40-60% of patients demonstrating two or more distinct facial bone fractures. This finding reflects the high-energy nature of many African road traffic accidents, involving unrestrained occupants, motorcycle riders without helmets, and pedestrians struck at high speeds. Bilateral mandibular fractures occur in 25-35% of patients with mandibular injuries, substantially exceeding rates in Western populations. The presence of multiple fractures complicates surgical planning, extends operative time, and correlates with poorer functional outcomes and higher complication rates.

Soft tissue injuries accompany skeletal fractures in the vast majority of RTA-related maxillofacial trauma cases, with lacerations, abrasions, and contusions present in more than 90% of patients. The extent and severity of soft tissue injury demonstrate substantial variation based on collision mechanism and protective equipment usage. Degloving injuries, representing particularly severe soft tissue trauma, occur in approximately 5-10% of high-energy maxillofacial injuries, most commonly in motorcycle accidents involving sliding impact with road surfaces. These injuries present complex reconstructive challenges requiring meticulous debridement, soft tissue repair, and often multiple staged procedures to achieve acceptable functional and aesthetic outcomes.

Dental injuries accompany maxillofacial skeletal trauma in approximately 30-50% of RTA cases, encompassing tooth fractures, avulsions, luxations, and alveolar process fractures. The high frequency of dental injuries reflects the exposed position of anterior teeth and their vulnerability to direct impact forces. Multiple tooth involvement occurs commonly, with patients averaging 2-4 teeth affected per case. The management of dental injuries in African trauma settings faces challenges including limited availability of dental specialists, lack of materials for splinting and restoration, and patient financial constraints that often result in tooth extraction rather than preservation.

Temporomandibular joint injuries occur in approximately 10-15% of maxillofacial trauma cases, either as isolated injuries or in association with mandibular fractures. Condylar fractures represent the most common TMJ injury pattern, while traumatic joint dislocations and hemarthrosis occur less frequently. The clinical significance of TMJ injuries extends well beyond the acute injury phase, with substantial proportions of patients developing chronic pain, clicking, limited mouth opening, and masticatory dysfunction that persist for months or years

following injury. These long-term sequelae receive limited attention in resource-constrained African healthcare settings, where focus necessarily remains on acute life-threatening injuries and basic functional restoration.

7. Associated Injuries and Complications

Maxillofacial injuries from road traffic accidents rarely occur in isolation, with the majority of patients sustaining concomitant injuries to other body regions that significantly influence management priorities, outcomes, and prognosis. Understanding the spectrum of associated injuries proves essential for comprehensive trauma care planning, appropriate resource allocation, and realistic outcome prognostication. The pattern of associated injuries in African RTA victims differs somewhat from that observed in high-income countries, reflecting differences in injury mechanisms, vehicle safety features, and prehospital care systems that influence both injury patterns and survival to hospital presentation.

Traumatic brain injury represents the most clinically significant category of associated injuries, occurring in approximately 30-50% of patients with maxillofacial trauma from road traffic accidents according to African hospital-based studies. The spectrum of brain injuries ranges from mild concussions to severe diffuse axonal injury and large intracerebral hematomas requiring neurosurgical intervention. Studies from Nigeria and South Africa report that approximately 15-25% of maxillofacial trauma patients demonstrate loss of consciousness at the accident scene or during hospital presentation, indicating at least moderate brain injury. The presence of significant brain injury fundamentally alters management priorities, typically necessitating delayed definitive treatment of facial fractures until neurological stability is achieved.

The anatomical proximity of the facial skeleton to the cranial vault creates mechanical linkages that frequently result in concurrent injury transmission. High-energy impacts sufficient to produce complex midface fractures often generate forces that propagate to intracranial structures, resulting in skull base fractures, intracranial hemorrhage, and diffuse brain injury. Le Fort fractures demonstrate particularly strong associations with intracranial injury, with studies reporting brain trauma in 60-80% of patients with Le Fort III fractures. The presence of cerebrospinal fluid rhinorrhea or otorrhea indicates skull base fracture with dural disruption, occurring in approximately 10-15% of severe maxillofacial trauma cases and carrying substantial risk of meningitis and delayed neurological complications.

Cervical spine injuries occur in approximately 5-15% of patients with significant maxillofacial trauma, representing a critical consideration in initial trauma assessment and management. The biomechanical forces that produce facial fractures frequently involve axial loading, flexion, or extension mechanisms that can simultaneously injure cervical vertebrae, intervertebral discs, and spinal cord structures. Failure to identify and appropriately immobilize cervical spine injuries can result in catastrophic neurological deterioration, making systematic cervical spine evaluation mandatory in all patients with significant facial trauma. Studies from African trauma centers

report that cervical spine injuries are frequently missed or inadequately evaluated in resource-limited settings, contributing to preventable neurological complications.

Ocular injuries accompany maxillofacial trauma in approximately 10-20% of RTA cases, encompassing a spectrum from minor corneal abrasions to vision-threatening globe ruptures and retinal injuries. The mechanisms of ocular injury include direct globe trauma from projectiles or impact with vehicle components, indirect injury from orbital fracture fragments, and secondary injury from orbital hematoma or compartment syndrome. Globe rupture occurs in approximately 2-5% of patients with periorbital fractures, representing an ophthalmic emergency requiring immediate surgical repair to preserve any potential for useful vision. Traumatic optic neuropathy affects approximately 3-7% of patients with severe midface trauma, presenting with acute vision loss that may be complete or partial. The management of traumatic optic neuropathy remains controversial, with variable evidence supporting high-dose corticosteroid administration or surgical optic canal decompression in appropriately selected cases.

Visual disturbances following maxillofacial trauma extend beyond acute globe injuries to encompass diplopia from extraocular muscle entrapment or nerve injury, which occurs in approximately 15-25% of patients with orbital fractures. The inferior rectus and medial rectus muscles demonstrate particular vulnerability to entrapment within orbital floor and medial wall fractures respectively. While many cases of post-traumatic diplopia resolve spontaneously over weeks to months as edema subsides and minor malpositions remodel, persistent diplopia requiring surgical correction affects approximately 5-10% of orbital fracture patients. Access to specialized ophthalmological assessment and strabismus surgery remains limited across many African healthcare settings, resulting in substantial numbers of patients living with permanent visual disability.

Chest injuries occur in approximately 25-40% of patients with maxillofacial trauma from road traffic accidents, encompassing pneumothorax, hemothorax, pulmonary contusions, rib fractures, and cardiac injuries. The mechanism of chest injury typically involves direct thoracic impact in vehicular collisions or compression injuries in motorcycle crashes. Tension pneumothorax represents an immediately life-threatening condition requiring emergency needle decompression or chest tube placement, occurring in approximately 3-5% of severe trauma cases. Pulmonary contusions demonstrate particular clinical significance in patients requiring general anesthesia for facial fracture repair, as compromised respiratory function increases anesthetic risk and postoperative pulmonary complications.

Abdominal injuries affect approximately 15-25% of patients with significant maxillofacial trauma, with the spectrum ranging from solid organ contusions to major vascular injuries and hollow viscus perforations. Splenic injuries represent the most common solid organ trauma, occurring in approximately 30-40% of patients with abdominal injuries, followed by hepatic injuries in 25-35% of cases. Delayed recognition of intra-abdominal injuries contributes to

preventable mortality in trauma patients, particularly in African settings where access to computed tomography scanning remains limited and clinical assessment must guide management decisions. The presence of significant abdominal injuries typically delays definitive facial fracture management until hemodynamic stability is achieved and life-threatening intra-abdominal pathology is addressed.

Orthopedic injuries occur in approximately 30-50% of maxillofacial trauma patients, encompassing fractures of the extremities, pelvis, and axial skeleton. Long bone fractures of the femur, tibia, and humerus represent the most common patterns, frequently occurring in motorcycle accidents and pedestrian-vehicle collisions. Pelvic fractures affect approximately 10-15% of patients with maxillofacial trauma, carrying substantial mortality risk when associated with major hemorrhage from pelvic vascular injuries. The management of multiple skeletal injuries requires careful coordination between maxillofacial, orthopedic, and trauma surgery services to optimize sequencing of interventions and minimize complications from prolonged immobilization.

Hemorrhage represents a critical acute complication of maxillofacial trauma, with both immediate and delayed bleeding patterns creating management challenges. Immediate massive hemorrhage most commonly arises from midface trauma involving pterygoid plexus disruption, maxillary artery injury, or carotid artery branches. Studies report that approximately 5-10% of severe midface injuries present with life-threatening hemorrhage requiring aggressive resuscitation and urgent surgical or interventional radiological control. Delayed hemorrhage occurring hours to days after injury affects approximately 2-5% of patients, often resulting from pseudo-aneurysm formation or vessel wall necrosis in initially contained injuries. Access to interventional radiology services for selective arterial embolization remains extremely limited across most African hospitals, necessitating reliance on surgical ligation techniques that carry greater morbidity.

Airway compromise represents an immediate life-threatening complication in approximately 10-15% of patients with severe maxillofacial trauma, resulting from multiple mechanisms including direct airway obstruction by displaced fracture segments, extensive hemorrhage causing blood aspiration, soft tissue edema compromising airway patency, and depressed consciousness from associated brain injury. Tongue-based obstruction occurs particularly commonly in bilateral mandibular fractures where loss of anterior mandibular support allows posterior displacement of the tongue base. The establishment and maintenance of a secure airway assumes absolute priority in maxillofacial trauma management, often requiring early definitive airway control through endotracheal intubation or surgical airway establishment before other interventions.

Aspiration pneumonia develops in approximately 10-15% of patients with significant maxillofacial trauma, particularly those with associated brain injury, prolonged unconsciousness, or inadequate airway protection during the prehospital phase. The aspiration of blood, saliva,

International Journal of Dental Sciences & Research

foreign material, or gastric contents during the vulnerable period between injury occurrence and airway securement creates substantial risk for chemical pneumonitis and secondary bacterial pneumonia. The prevention of aspiration through early airway management, appropriate positioning, and gastric decompression represents a critical component of maxillofacial trauma care that receives inadequate attention in many resource-limited settings.

Wound infections complicate approximately 15-25% of maxillofacial injuries in African series, substantially exceeding rates reported from high-income countries. Multiple factors contribute to elevated infection rates including delays in definitive treatment, limited access to prophylactic antibiotics, contaminated injury environments, and resource constraints affecting surgical technique and postoperative care. The richly vascularized facial tissues generally resist infection more effectively than many other body regions, yet the inevitable bacterial contamination of open facial injuries creates ongoing infection risk. *Staphylococcus aureus* and mixed oral flora represent the most common causative organisms, with increasing concerns regarding antimicrobial resistance in African healthcare settings.

Osteomyelitis of the facial bones occurs in approximately 3-5% of maxillofacial fracture cases in African populations, representing a severe complication associated with treatment failures, prolonged morbidity, and poor functional outcomes. The mandible demonstrates greatest vulnerability to osteomyelitis development due to its predominantly cortical bone structure, limited collateral blood supply following periosteal stripping, and exposure to the contaminated oral environment. Risk factors for osteomyelitis development include treatment delays exceeding two weeks, inadequate fracture stabilization, compromised soft tissue coverage, and medical comorbidities including diabetes and HIV infection. Management requires prolonged antimicrobial therapy, often necessitating debridement and removal of necrotic bone and hardware.

Malocclusion represents one of the most common functional complications following mandibular fractures, occurring in approximately 20-30% of cases even with appropriate treatment. The complex three-dimensional anatomy of the mandible and occlusal relationships creates substantial technical challenges in achieving precise anatomical reduction and stable fixation. Inadequate reduction, malunion, and condylar displacement all contribute to persistent occlusal disturbances that impair masticatory function and patient satisfaction. The correction of established malocclusion often requires complex orthodontic treatment or secondary surgical procedures that may not be accessible to many African patients due to cost constraints and limited availability of specialized services.

Facial nerve injury occurs in approximately 5-10% of maxillofacial trauma cases, resulting from direct nerve trunk injury, branch lacerations, or nerve compromise from edema and fracture displacement. Temporal and zygomatic branches demonstrate particular vulnerability in lateral facial trauma, while the marginal mandibular branch faces risk in submandibular region injuries.

Immediate complete facial paralysis suggests nerve transection requiring surgical exploration and repair, while delayed or partial paralysis more commonly reflects neuropraxia with favorable prognosis for spontaneous recovery. Access to nerve repair expertise and microsurgical capabilities remains limited in many African surgical settings, resulting in permanent facial paralysis in some patients who might benefit from early intervention.

Chronic pain syndromes affect approximately 15-25% of maxillofacial trauma survivors, encompassing temporomandibular joint pain, neuropathic pain from nerve injuries, and nonspecific facial pain syndromes. The mechanisms of chronic pain development remain incompletely understood but likely involve combinations of structural damage, peripheral sensitization, and central pain processing alterations. The limited availability of multidisciplinary pain management services across most African healthcare systems means that many patients receive inadequate treatment for chronic pain, substantially impairing quality of life and functional capacity. The psychological and social impacts of chronic facial pain extend well beyond the physical discomfort, affecting employment, relationships, and mental health.

Psychosocial complications following maxillofacial trauma deserve greater recognition as significant determinants of long-term patient outcomes. Studies assessing psychological wellbeing in facial trauma survivors document high rates of anxiety, depression, post-traumatic stress disorder, and reduced quality of life that may persist for years after physical healing. The visible and often disfiguring nature of facial injuries creates unique psychological burdens related to altered appearance, social stigma, and impaired interpersonal functioning. Cultural contexts in many African societies may intensify these burdens through traditional beliefs about facial disfigurement, reduced marriage prospects, and social marginalization. The near-complete absence of psychological support services within African trauma care systems leaves these critical needs largely unaddressed.

8. Risk Factors and Vulnerable Populations

Understanding the risk factors that elevate susceptibility to maxillofacial injuries from road traffic accidents provides essential foundations for targeted prevention strategies and identification of high-risk populations requiring intensive intervention. The African context presents a unique constellation of risk factors reflecting socioeconomic conditions, cultural practices, infrastructure limitations, and regulatory environments that differ substantially from those in high-income countries. Comprehensive risk factor analysis must consider both individual-level determinants of exposure and vulnerability as well as population-level factors that shape the broader traffic safety environment.

Age represents one of the most consistent risk factors for RTA-related maxillofacial injuries across all African populations, with young adults aged 20-40 years demonstrating dramatically elevated risk compared to other age groups. This elevated risk reflects multiple contributing factors including higher rates of vehicle operation and motorcycle riding, greater mobility for

economic and social purposes, increased risk-taking behaviors, inexperience in hazard perception and response, and potentially higher alcohol consumption rates. The concentration of injuries in this economically productive age group amplifies societal impacts through lost workforce participation, family disruption, and long-term disability burden. Studies from Nigeria and Kenya indicate that individuals aged 20-35 account for approximately 55-65% of all RTA-related maxillofacial injuries despite representing only 25-30% of the total population.

Gender differences in maxillofacial injury risk prove substantial and consistent across African settings, with males experiencing 3-5 times higher risk than females. This marked disparity reflects multiple intersecting factors including men's predominant roles as vehicle and motorcycle operators, greater occupational mobility exposures, higher rates of risk behaviors including speeding and impaired driving, and potentially reduced caution in traffic situations. Cultural norms in many African societies restrict female mobility and vehicle operation, paradoxically conferring some protective effect against traffic injuries while simultaneously constraining economic opportunities and social participation. Recent trends suggest gradual narrowing of gender disparities in some urban areas as female workforce participation increases and social norms evolve.

Occupational exposures create substantial risk gradients within populations, with commercial vehicle operators, motorcycle taxi riders, and mobile workers experiencing dramatically elevated injury risks. Commercial motorcycle taxi operators face particularly extreme risks, with some studies suggesting annual injury incidences exceeding 10% among active riders. The economic pressures that drive aggressive riding, extended working hours, vehicle overloading, and maintenance neglect create permissive conditions for crashes and severe injuries. Long-distance truck drivers similarly face elevated risks from fatigue, excessive speeds, poor vehicle maintenance, and extended exposure to hazardous road conditions. The informal nature of much commercial transportation in Africa means these high-risk occupational groups often lack employment protections, health insurance, or workplace safety oversight.

Socioeconomic status demonstrates complex relationships with maxillofacial injury risk, with both wealth and poverty associated with elevated risks through different mechanisms. Lower-income populations experience increased exposure as pedestrians and passengers in unsafe vehicles, face greater delays accessing trauma care, and demonstrate reduced capacity to afford protective equipment including helmets and vehicle safety features. Conversely, higher-income groups demonstrate increased risk through greater vehicle ownership, higher speeds, and potentially increased alcohol consumption and nighttime mobility. Studies from South African populations suggest a J-shaped relationship between income and injury risk, with both the poorest and wealthiest quintiles showing elevated rates compared to middle-income groups.

Educational attainment correlates inversely with maxillofacial injury risk in most African populations, with individuals having completed secondary or tertiary education demonstrating

approximately 30-40% lower risk than those with only primary education or less. This protective effect likely operates through multiple pathways including better understanding of traffic risks, higher likelihood of safety belt and helmet usage, reduced engagement in high-risk occupational exposures, and improved access to safer transportation modes. The population-level concentration of injuries among less-educated groups underscores the importance of educational interventions in comprehensive injury prevention strategies.

Rural-urban differences in injury patterns reflect distinct risk profiles characterizing different geographical contexts. Urban areas demonstrate higher absolute numbers of injuries associated with traffic density, high speeds, motorcycle proliferation, and mixed traffic conditions. Rural areas exhibit different risk patterns characterized by poor road surface quality, inadequate lighting, limited emergency services, greater distances to definitive care, and higher proportions of pedestrian and bicycle injuries. Some studies suggest that while injury incidence may be lower in rural areas, injury severity and mortality rates exceed urban levels due to higher speeds on rural roads and delayed access to trauma care.

Helmet non-usage represents one of the most modifiable and consequential risk factors for maxillofacial injuries among motorcycle users, with helmetless riders demonstrating 3-4 times higher risk of facial injuries compared to helmeted riders. Despite clear evidence of helmet effectiveness and helmet laws in most African countries, usage rates remain below 30% in many settings due to inadequate enforcement, limited helmet availability, cost barriers, discomfort in tropical climates, and cultural attitudes perceiving helmets as unnecessary or socially undesirable. Studies from Tanzania and Kenya document that fewer than 20% of motorcycle taxi riders consistently use helmets, and passenger helmet usage approaches zero in many areas.

Alcohol consumption creates substantial elevation in both crash risk and injury severity when crashes occur. While precise estimates of alcohol involvement remain limited by inadequate blood alcohol testing, available evidence suggests that approximately 30-40% of drivers involved in serious crashes demonstrate impairment at the time of collision. The risk elevation associated with alcohol proves dose-dependent, with each 0.02% increase in blood alcohol concentration associated with approximately 25-35% increased crash risk. Cultural attitudes toward alcohol use, particularly in social settings, combined with minimal enforcement of drink-driving laws in most African countries, perpetuate high rates of alcohol-impaired driving despite well-established risks.

Speed represents perhaps the single most important modifiable risk factor influencing both crash probability and injury severity. Excessive speed contributes to estimated 40-50% of fatal crashes across African countries, with each 1% increase in mean speed associated with approximately 4% increase in fatal crash risk. The kinetic energy involved in collisions increases exponentially with speed, meaning that modest speed reductions achieve substantial injury mitigation. However, speed management proves challenging in African contexts due to limited enforcement

capacity, widespread noncompliance with posted speed limits, road designs facilitating high speeds, and cultural attitudes tolerating excessive speeds.

Vehicle condition and age significantly influence crash risk and injury patterns. The predominance of older used vehicles in African vehicle fleets creates substantial safety concerns through mechanical failures, absent safety features, and reduced crash protection. Studies indicate that vehicles over 15 years old demonstrate approximately 2-3 times higher crash involvement rates than newer vehicles, reflecting brake failures, steering problems, tire blowouts, and lighting deficiencies. The economic realities that drive many Africans to operate poorly maintained vehicles create difficult tensions between mobility needs and safety imperatives.

HIV infection status may influence maxillofacial injury risk and outcomes in African populations with high HIV prevalence, though research on this relationship remains limited. Potential mechanisms include effects of HIV or antiretroviral medications on cognitive function and reaction time, neuropsychiatric complications affecting judgment and risk perception, and physiological effects on wound healing and infection susceptibility. Studies from South African trauma populations suggest HIV-infected individuals may experience higher complication rates following maxillofacial trauma, though whether HIV status independently affects injury risk remains uncertain.

Seasonal and temporal patterns create risk variations that identify high-risk periods for targeted interventions. Weekend days consistently demonstrate 30-50% higher crash rates than weekdays across most African countries, associated with recreational travel, increased alcohol consumption, and reduced emergency service availability. Evening and nighttime hours show disproportionately elevated risk, with approximately 50-60% of fatal crashes occurring during nighttime despite much lower traffic volumes. Holiday periods including Christmas, New Year, and major religious festivals demonstrate dramatic crash and injury increases, with some countries reporting 2-3 fold elevation in crash rates during peak holiday periods.

Previous crash involvement predicts substantially elevated future crash risk, with individuals having one prior crash demonstrating approximately 2-3 times higher risk of subsequent crashes than those without prior crashes. This pattern likely reflects a combination of persistent individual risk factors including risk-taking tendencies, impaired driving skills, and hazardous mobility patterns, as well as potential brain injury effects on cognitive function and judgment. Identification of repeat crash victims provides opportunities for targeted interventions, though systematic tracking of crash involvement across different healthcare encounters remains rare in African healthcare systems.

Comorbid medical conditions including epilepsy, diabetes, cardiovascular disease, and visual impairment elevate crash risks through various mechanisms affecting consciousness, cognitive function, and sensory perception. However, systematic screening for medical fitness to drive

remains virtually absent across most African countries, with vehicle licensing processes focusing primarily on mechanical driving skills rather than medical assessment. The aging of African populations and increasing prevalence of chronic diseases suggest that medical fitness for driving will become increasingly important considerations in coming decades.

Mental health conditions including depression, anxiety, substance use disorders, and cognitive impairment influence crash risk through effects on attention, judgment, risk perception, and behavioral control. The limited availability of mental health services and substantial stigma surrounding mental illness in many African societies means these conditions often go unrecognized and untreated, allowing affected individuals to continue driving despite potentially significant impairments. Integration of mental health screening into driver licensing and periodic medical assessments could identify high-risk individuals, though implementation faces substantial practical and cultural barriers.

9. Healthcare Response and Treatment Patterns

The healthcare system response to maxillofacial trauma from road traffic accidents encompasses prehospital emergency care, emergency department assessment and stabilization, definitive surgical management, and post-acute rehabilitation services. The capacity and effectiveness of healthcare responses vary dramatically across African countries and between urban and rural settings, reflecting disparities in infrastructure, human resources, equipment availability, and financial resources. Understanding current treatment patterns and system constraints provides essential context for interpreting outcome data and identifying priorities for system strengthening.

Prehospital emergency medical services remain severely underdeveloped across most of the African continent, with the majority of countries lacking organized ambulance systems, trained prehospital care providers, or standardized emergency communication infrastructure. Studies from multiple African countries indicate that fewer than 20% of trauma victims receive any form of prehospital medical care, with most relying on lay bystanders or commercial vehicles for transport to healthcare facilities. This prehospital care vacuum results in substantial delays between injury occurrence and hospital arrival, often extending to several hours for patients in rural areas or following crashes on remote road segments. The absence of trained prehospital providers means that basic interventions including airway management, hemorrhage control, cervical spine immobilization, and fluid resuscitation rarely occur during transport.

Emergency department capacity for trauma care varies substantially across African healthcare facilities, with most district-level hospitals lacking specialized trauma services, protocols, or adequately trained personnel. Many emergency departments operate without dedicated emergency physicians, relying instead on general practitioners or surgical trainees to provide initial assessment and stabilization. The availability of essential diagnostic imaging including radiography and computed tomography proves limited outside major urban referral centers,

constraining ability to comprehensively assess injury extent and plan definitive management. Studies from Tanzanian and Nigerian hospitals document median emergency department evaluation times exceeding two hours for trauma patients, reflecting staff shortages, competing priorities, and system inefficiencies.

The application of standardized trauma protocols including Advanced Trauma Life Support (ATLS) principles remains inconsistent across African healthcare facilities. While many tertiary referral centers have adopted ATLS-based approaches, implementation at district and regional levels faces barriers including limited training opportunities, staff turnover, resource constraints affecting ability to follow algorithmic approaches, and institutional cultures that may not prioritize standardization. Survey data from multiple African countries suggest that fewer than 40% of physicians providing trauma care have received formal ATLS training, and even among trained providers, adherence to systematic approaches may be suboptimal in resource-constrained environments.

Definitive surgical management of maxillofacial injuries requires specialized expertise in oral and maxillofacial surgery or plastic surgery, availability of specialized equipment and implants, and adequate theatre time and support services. The distribution of maxillofacial surgery specialists across Africa remains extremely skewed, with most countries having fewer than one specialist per million population and the vast majority of specialists concentrated in major urban centers. This workforce shortage creates substantial disparities in access to specialized care, with rural populations often receiving only basic stabilization at local facilities before facing difficult decisions regarding seeking specialized treatment at distant urban hospitals versus accepting suboptimal local management.

Treatment delays represent a pervasive challenge across African trauma care systems, with studies documenting median times from injury to definitive surgical treatment ranging from 5-14 days across different countries and facilities. These delays reflect multiple bottlenecks including limited theatre availability, competing emergency surgical priorities, patient financial barriers to accessing care, and treatment protocols that may inappropriately defer facial fracture management. While soft tissue swelling often necessitates delayed fracture treatment, prolonged delays beyond two weeks increase risks of malunion, infection, and poor functional outcomes. Financial constraints force many patients to delay treatment while seeking funds, with some ultimately abandoning treatment due to inability to afford care costs.

The technical approaches to fracture management demonstrate substantial heterogeneity across African surgical practices, reflecting variations in training paradigms, resource availability, and individual surgeon preferences. Open reduction and internal fixation using plates and screws has become the dominant approach in well-resourced centers, following global trends toward stable fixation that permits early function. However, many facilities continue to rely predominantly on closed reduction with intermaxillary fixation due to cost constraints, limited availability of plates

and screws, and concerns about infection risks with implanted materials. Studies comparing outcomes between treatment modalities in African populations show comparable results for appropriately selected cases, though the prolonged maxillomandibular fixation period required with closed treatment creates substantial functional impairment and nutritional challenges.

The availability of rigid internal fixation systems remains a significant constraint across many African surgical centers, with inconsistent supply chains, high costs, and import challenges creating frequent material shortages. When fixation materials are available, costs often must be borne directly by patients through out-of-pocket payments, creating substantial financial barriers to optimal care. Some centers have experimented with locally manufactured fixation systems as cost-reduction strategies, though quality control concerns and limited variety of plate configurations constrain widespread adoption. The tension between optimal technical management and financial accessibility creates difficult ethical dilemmas for surgeons and patients navigating treatment decisions.

Anesthesia services for maxillofacial trauma surgery face multiple challenges including limited availability of trained anesthesia providers, inadequate monitoring equipment, restricted access to modern anesthetic agents, and insufficient intensive care capacity for postoperative management. Many African countries demonstrate critical shortages of anesthesiologists and nurse anesthetists, with physician anesthesiologist densities often below one per 100,000 population. These workforce constraints necessitate reliance on non-physician providers with limited training, potentially compromising anesthetic safety and capacity to manage complex cases. The need for shared airways between surgical access and anesthetic airway management creates particular challenges in maxillofacial surgery, often necessitating tracheostomy for complex midface procedures.

Postoperative care quality significantly influences outcomes but receives inadequate attention in resource-limited settings where focus necessarily remains on acute surgical intervention. Inadequate postoperative analgesia, limited nursing supervision, absent physiotherapy services, and early discharge driven by bed pressures all contribute to suboptimal recovery trajectories. Nutritional support proves particularly challenging for patients with prolonged intermaxillary fixation, with many patients experiencing substantial weight loss and functional decline during treatment. The absence of dietetic services at most facilities means nutritional counseling and support rarely occur, leaving patients and families to navigate these challenges independently.

Complications following maxillofacial trauma surgery occur more frequently in African populations compared to high-income countries, reflecting treatment delays, resource constraints affecting surgical technique, limited postoperative support, and patient factors including malnutrition and comorbidities. Infection rates following open reduction internal fixation range from 15-25% across various African studies, substantially exceeding rates of 5-10% typically reported from developed countries. Malunion and nonunion complications affect approximately

10-15% of mandibular fractures, related to inadequate reduction, unstable fixation, treatment delays, and premature return to function. Hardware failure requiring removal occurs in approximately 8-12% of cases, associated with infection, mechanical overload, and potentially suboptimal fixation techniques.

Follow-up care after hospital discharge proves extremely challenging across African healthcare systems, with high rates of loss to follow-up limiting ability to assess outcomes, manage complications, and provide ongoing rehabilitation. Studies report that 30-50% of maxillofacial trauma patients fail to return for scheduled follow-up appointments, reflecting transportation costs, lost work time, perception that follow-up is unnecessary after healing, and financial constraints. This limited follow-up creates substantial knowledge gaps regarding long-term outcomes, functional recovery, quality of life, and late complications. The absence of systematic outcome tracking prevents quality improvement efforts and perpetuates suboptimal care patterns.

Rehabilitation services including physiotherapy, speech therapy, psychological counseling, and occupational therapy remain virtually absent from trauma care pathways in most African healthcare settings. While these services could substantially improve functional outcomes and quality of life for maxillofacial trauma survivors, systematic provision faces barriers including lack of trained rehabilitation professionals, limited awareness of potential benefits, absence of funding mechanisms, and overwhelming focus on acute surgical interventions. The few patients who access rehabilitation services typically do so through private payment at specialized facilities, creating severe inequities in recovery opportunities.

Cost-effectiveness analyses of different management approaches remain sparse in African contexts, limiting evidence-based resource allocation decisions. The direct medical costs of maxillofacial trauma management vary widely based on injury severity and treatment approach, with estimates ranging from \$500-3000 for straightforward mandibular fractures to \$5000-15000 for complex panfacial injuries requiring multiple procedures. These costs prove catastrophic for many African families, particularly given that injuries predominantly affect young adults who may have limited savings and insurance coverage. Indirect costs from lost productivity, caregiver burden, and long-term disability likely exceed direct medical costs but remain poorly quantified.

10. Prevention Strategies and Policy Implications

The substantial burden of maxillofacial injuries from road traffic accidents in Africa demands comprehensive, evidence-based prevention strategies addressing multiple determinants at individual, community, and policy levels. Successful injury prevention requires integrated approaches combining engineering solutions to create safer road environments, enforcement of protective legislation, and education to promote safer behaviors. International experience demonstrates that substantial reductions in road traffic injuries are achievable through sustained commitment to evidence-based interventions, political will, adequate resource allocation, and

International Journal of Dental Sciences & Research

multi-sectoral coordination. The African context presents unique implementation challenges but also opportunities for innovation and adaptation of proven strategies to local conditions.

Legislative frameworks for road safety exist in most African countries but suffer from inadequate enforcement that severely limits their protective effects. Speed limits, safety belt requirements, helmet laws, blood alcohol concentration limits, and licensing requirements appear in statute books but frequently remain unenforced due to limited police resources, corruption, inadequate judicial support, and cultural attitudes that tolerate noncompliance. Studies examining the impact of African road safety legislation consistently demonstrate that law existence alone achieves minimal behavioral change without visible and consistent enforcement. Investment in enforcement capacity including traffic police staffing, equipment such as speed detection devices and breathalyzers, and judicial processes to impose meaningful penalties represents a critical foundation for effective prevention.

Helmet promotion and enforcement for motorcycle users represents one of the most cost-effective interventions available for reducing maxillofacial injuries, with properly worn helmets reducing facial injury risk by approximately 65-75%. Comprehensive helmet programs require multiple components including legislation mandating helmet usage, affordable helmet availability, quality standards ensuring protective efficacy, enforcement mechanisms to ensure compliance, and public education addressing misconceptions and resistance. Several African cities including Dar es Salaam and Lagos have implemented intensified helmet enforcement campaigns demonstrating substantial increases in usage rates from below 20% to 60-70% within months, accompanied by measurable reductions in head and facial injuries.

Speed management interventions including enforcement, infrastructure modifications, and vehicle technology offer substantial potential for injury reduction given speed's central role in crash causation and severity. Successful speed management requires comprehensive approaches beyond simple speed limit posting, including traffic calming measures in high-risk areas such as school zones and markets, strategically placed speed cameras with visible enforcement presence, road design modifications that physically constrain speeds, and public awareness campaigns emphasizing speed-injury relationships. International evidence demonstrates that reducing average speeds by just 5% achieves approximately 20% reduction in fatal crashes, making speed management one of the most effective intervention strategies available.

Improved road infrastructure represents a foundational element of comprehensive prevention strategies, though infrastructure improvements require substantial investment and extended implementation timeframes. Priority interventions include separation of vulnerable road users from motorized traffic through sidewalks and bicycle lanes, improved road surfacing and maintenance to reduce loss-of-control crashes, installation of adequate street lighting in high-risk locations, removal or protection of roadside hazards including trees and utility poles, and installation of pedestrian crossing facilities at strategic locations. Road safety audits of new road

International Journal of Dental Sciences & Research

construction and modification projects can identify and address safety concerns during design phases when interventions prove far less costly than retrofitting existing roads.

Vehicle safety standards enforcement including roadworthiness testing, import standards for used vehicles, and periodic inspection systems could substantially reduce crashes caused by mechanical failures. Many African countries allow importation of used vehicles with minimal safety features that would not meet current safety standards in originating countries. Establishing minimum safety standards for imported vehicles including requirements for airbags, anti-lock brakes, and electronic stability control would gradually improve fleet safety as older vehicles are retired. Periodic vehicle inspection systems identifying and removing dangerous vehicles from roads could address the current situation where substantial proportions of vehicles operate with critical safety defects including failed brakes, worn tires, and defective lights.

Alcohol-impaired driving interventions require multi-faceted approaches addressing availability, enforcement, and social norms. Sobriety checkpoints with random breath testing, lowered legal blood alcohol limits particularly for commercial drivers and young drivers, administrative license suspension for impaired driving, and substantial penalties including imprisonment for repeat or severe offenses have all demonstrated effectiveness in reducing impaired driving in other contexts. African implementation faces challenges including limited breath testing equipment, enforcement capacity constraints, judicial system delays, and cultural attitudes tolerating drinking and driving. Nevertheless, pilot programs in several countries demonstrate feasibility and effectiveness of sustained enforcement combined with public education.

Emergency medical services development represents a critical investment in mitigating injury severity when crashes occur, with evidence suggesting that well-functioning prehospital care systems reduce trauma mortality by 30-40% compared to systems lacking organized emergency medical response. Essential components include toll-free emergency telephone numbers with dispatch capabilities, adequately distributed ambulance fleet with basic medical equipment, trained emergency medical technicians providing care during transport, established protocols for trauma center designation and bypass of inadequate facilities, and quality assurance systems ensuring care standards. While comprehensive EMS systems require substantial sustained investment, phased implementation beginning in high-burden urban areas can achieve meaningful impacts with realistic resource commitments.

Trauma care system strengthening encompasses multiple elements including designated trauma centers with specialized capabilities, training for healthcare providers in systematic trauma assessment and management, essential equipment and supplies availability, and standardized protocols supporting evidence-based care. The World Health Organization's Essential Trauma Care guidelines adapted to African resource contexts provide roadmap for minimum standards achievable within realistic budget parameters. Trauma registries capturing injury epidemiology, care processes, and outcomes enable continuous quality improvement but remain operational in

International Journal of Dental Sciences & Research

very few African facilities. Regional referral networks linking rural primary care facilities with urban specialized centers through established protocols and communication systems could improve outcomes through faster access to definitive care.

Community-based interventions leveraging local knowledge and structures offer opportunities to address context-specific risk factors and engage populations in prevention efforts. Successful community programs have included youth education initiatives targeting school-age children with road safety curriculum, motorcycle taxi associations implementing safety training and equipment provision for members, faith-based organizations incorporating road safety messages into religious gatherings, and traditional authorities establishing local traffic safety committees addressing community-specific hazards. Community participation in road safety creates ownership, facilitates cultural adaptation of interventions, and enables sustained implementation with limited external resources.

Public awareness campaigns utilizing mass media, social media, and community outreach can influence knowledge, attitudes, and behaviors related to road safety when designed based on behavioral change theory and adequately resourced for sustained implementation. Effective campaigns employ memorable slogans and imagery, leverage emotional appeals and social norms, provide specific behavioral guidance rather than vague safety messages, and maintain presence over extended periods rather than brief awareness bursts. Evaluation of campaign effectiveness remains rare in African contexts, limiting understanding of which messages and approaches achieve behavioral change versus creating awareness without action.

Economic incentives and disincentives including insurance premium adjustments based on safety features and behaviors, subsidies for safety equipment such as helmets and child restraints, and graduated licensing systems for young drivers represent underutilized policy tools in African contexts. Vehicle insurance systems where functional could incorporate safety-based premium structures rewarding helmet usage, safety belt wearing, and crash-free driving records. Tax policies could reduce costs of safety equipment making them more accessible to lower-income populations who currently face greatest injury risks but least capacity to afford protective equipment.

Data system strengthening represents a foundational requirement for effective prevention policy, enabling identification of high-risk locations, times, populations, and contributing factors that should guide intervention prioritization. Comprehensive data systems require integration of police crash reports, hospital injury surveillance, vital registration mortality data, and ideally population-based injury surveys to capture the full injury pyramid including fatal, hospitalized, and treated-and-released injuries. Most African countries currently operate with fragmented data systems suffering from incomplete reporting, limited data quality, and absence of linkage across sources. Investment in data infrastructure, personnel training, and data use for policy decision-making would substantially enhance prevention effectiveness.

Multi-sectoral coordination mechanisms bringing together transportation, health, police, judiciary, insurance, and civil society sectors prove essential for comprehensive prevention strategies addressing the complex determinants of road traffic injuries. Road safety councils or similar structures providing governance, strategic planning, resource mobilization, and accountability have demonstrated success in countries achieving substantial injury reductions. African countries with functional multi-sectoral bodies have achieved greater progress than those where responsibility remains fragmented across uncoordinated agencies. Political commitment at highest levels provides critical support for elevating road safety priority and sustaining resource commitments over the extended timeframes required to achieve population-level impacts.

11. Discussion

This comprehensive multi-country analysis reveals the substantial and growing burden of maxillofacial injuries from road traffic accidents across the African continent, with patterns reflecting the unique transportation landscape, infrastructure conditions, and socioeconomic contexts characterizing diverse African populations. The findings demonstrate that RTAs constitute the predominant cause of maxillofacial trauma across African countries, accounting for 50-70% of cases presenting to specialized centers and affecting primarily young adult males during their most productive years. The concentration of injuries among individuals aged 20-40 years creates profound implications not only for individuals and families but for broader economic development and societal wellbeing across the continent.

The epidemiological patterns documented in this analysis differ in important respects from those observed in high-income countries, reflecting both the mechanisms of injury and the healthcare system responses characteristic of African settings. The predominance of vulnerable road users including motorcyclists and pedestrians among maxillofacial injury victims contrasts sharply with the vehicle occupant dominance typical of developed country patterns. This difference reflects Africa's distinct transportation ecology where motorcycles serve as essential mobility infrastructure, pedestrians share road space with motorized traffic due to inadequate sidewalks, and vehicle safety features remain absent from large proportions of the vehicle fleet. Understanding these distinctive patterns proves essential for designing contextually appropriate prevention and treatment strategies rather than simply importing approaches developed for different risk profiles.

The anatomical injury patterns reveal mandibular fractures as the overwhelmingly most common skeletal injury, occurring in approximately 45-55% of maxillofacial skeletal trauma cases. This predominance likely reflects the exposed position of the mandible, its vulnerability to lateral impact forces characteristic of motorcycle crashes and pedestrian collisions, and the high-energy mechanisms prevalent in African RTAs. The frequent occurrence of multiple fractures affecting two or more facial bone regions in 40-60% of cases indicates the severe trauma forces involved in African road traffic accidents, where unrestrained vehicle occupants, helmetless motorcycle

riders, and unprotected pedestrians absorb impact energies that would be mitigated by safety equipment in other contexts. The complexity of these injury patterns creates substantial technical challenges for surgical management, particularly in resource-limited settings where specialized equipment, implants, and expertise may be lacking.

The association of maxillofacial injuries with concomitant trauma to other body systems, particularly traumatic brain injury in 30-50% of cases, fundamentally shapes clinical management priorities and outcomes. The frequent presence of life-threatening associated injuries necessitates systematic trauma assessment following established protocols, delayed definitive facial fracture management until stabilization is achieved, and multidisciplinary care coordination that may exceed available resources in many African healthcare facilities. The substantial rates of complications including infections, malunion, and chronic pain reflect not only injury severity but also system constraints affecting timely definitive treatment, access to specialized surgical care, availability of appropriate materials and equipment, and postoperative support services. These complications impose prolonged morbidity, functional impairment, and reduced quality of life that extend well beyond the acute injury phase.

The risk factor analysis identifies multiple modifiable determinants amenable to intervention, with helmet non-usage, alcohol impairment, excessive speed, and poor vehicle maintenance emerging as particularly important contributors to injury occurrence and severity. The extremely low helmet usage rates documented across African motorcycle populations, often below 30% despite existing legislation, represent a critical missed opportunity for injury prevention given the well-established protective effects of proper helmet usage. The substantial involvement of alcohol in 25-40% of serious crashes, combined with minimal enforcement of impaired driving laws, similarly indicates clear pathways for intervention through enhanced enforcement, reduced legal blood alcohol limits, and social norm change campaigns. These modifiable risk factors offer realistic opportunities for substantial injury reduction with currently available interventions, requiring primarily political commitment, resource allocation, and sustained implementation rather than technological innovation.

The healthcare system analysis reveals critical gaps across the continuum from prehospital care through acute treatment to rehabilitation that substantially compromise outcomes and perpetuate injury burden. The near-absence of organized emergency medical services across most of Africa results in prolonged delays, lack of essential prehospital interventions, and preventable mortality and morbidity. The limited availability of specialized maxillofacial surgical expertise, concentrated overwhelmingly in major urban centers, creates profound geographic disparities in access to optimal care. The frequent inability of patients to afford treatment costs, even when specialized care is theoretically available, transforms maxillofacial injuries into sources of catastrophic financial burden while simultaneously resulting in delayed or abandoned treatment with consequent poor outcomes. These system deficiencies demand strategic investments in workforce development, infrastructure improvement, equipment and supply systems, and

financial risk protection mechanisms that enable access to essential trauma care regardless of ability to pay.

The prevention strategies discussed offer evidence-based pathways toward substantial injury reduction, though implementation faces formidable challenges in African contexts characterized by competing health priorities, limited resources, weak enforcement capacity, and governance challenges. International experience demonstrates that comprehensive approaches combining legislation, enforcement, engineering solutions, and education can achieve dramatic reductions in road traffic injuries over sustained periods. Countries including Sweden, Netherlands, and Australia have reduced road traffic fatality rates by 70-80% over recent decades through sustained commitment to Vision Zero principles and evidence-based interventions. African countries achieving progress including South Africa's intensified drunk driving enforcement and Tanzania's helmet promotion campaigns demonstrate that meaningful improvements remain achievable even in resource-constrained settings when political commitment, strategic planning, and adequate resource allocation align.

The economic implications of road traffic injuries extend far beyond direct medical costs to encompass lost productivity, caregiver burden, property damage, and broader macroeconomic impacts that may consume 3-5% of gross domestic product according to World Health Organization estimates. For African economies striving to achieve development goals and demographic dividends from young populations, the concentration of road traffic injuries among economically productive young adults represents a substantial obstacle to progress. The economic case for prevention investment proves compelling, with benefit-cost ratios for effective interventions typically ranging from 3:1 to over 10:1 when comprehensive economic impacts are considered. Reframing road traffic injury prevention as an economic development priority rather than solely a health concern may facilitate resource mobilization and political commitment necessary for sustained action.

The substantial heterogeneity observed across African countries in injury rates, patterns, healthcare responses, and prevention efforts underscores the importance of context-specific analysis and locally adapted interventions rather than continent-wide generalizations. Countries differ dramatically in levels of motorization, dominant transportation modes, road infrastructure quality, healthcare system capacity, governance effectiveness, and cultural factors influencing risk behaviors. These differences create diverse challenges and opportunities requiring nuanced understanding and tailored approaches. Nevertheless, certain commonalities including high vulnerability of motorcycle users and pedestrians, limited enforcement of protective legislation, inadequate emergency medical systems, and concentration of specialized surgical care in urban centers suggest that regional collaboration and knowledge sharing could accelerate progress through learning from successful initiatives across different countries.

The limited research base characterizing African road traffic injury epidemiology, particularly the scarcity of population-based studies with denominator data enabling true incidence calculation, constrains evidence-based policy development and resource allocation. Most available evidence derives from hospital-based case series lacking population denominators and potentially subject to referral bias and selection effects. The absence of standardized injury surveillance systems, trauma registries, and linked data across police, health, and vital registration sources leaves substantial knowledge gaps regarding injury burden, risk factors, healthcare effectiveness, and outcomes. Strategic investment in research infrastructure, surveillance systems, and analytic capacity would substantially enhance understanding and inform more effective prevention and treatment strategies. Academic institutions, government health and transport agencies, and international partners share responsibility for building this evidence base through collaborative research initiatives.

The ethical dimensions of maxillofacial trauma from road traffic accidents deserve explicit consideration, particularly regarding equity, justice, and societal obligations to protect vulnerable populations and ensure access to care. The concentration of injuries among young males, while reflecting exposure patterns, also suggests inadequate protective measures for populations engaged in high-risk occupational activities including commercial motorcycle riding and long-distance driving. The substantial financial barriers to accessing specialized surgical care that leave many patients untreated or receiving suboptimal care due to inability to pay raise fundamental questions about health system equity and social justice. The preventability of most road traffic injuries through known effective interventions creates moral imperatives for action that transcend narrow cost-effectiveness calculations to encompass broader societal obligations to protect citizens from foreseeable harms.

12. Limitations

This analysis faces several important limitations that should inform interpretation of findings and recognition of knowledge gaps requiring further research. The reliance on published literature, while enabling comprehensive synthesis across multiple countries, constrains analysis to available evidence and excludes unpublished data, gray literature, and ongoing initiatives that may not yet appear in academic publications. The predominance of hospital-based studies among available evidence creates potential selection bias toward more severe injuries, potentially overestimating injury severity while underestimating true population incidence by missing patients who die before reaching healthcare facilities, receive care at facilities without research programs, or forgo treatment entirely. The absence of population denominators in most studies prevents calculation of true incidence rates and limits ability to make meaningful cross-country comparisons or assess temporal trends.

The substantial heterogeneity in study methodologies, case definitions, data collection procedures, and outcome measures across included studies precludes formal meta-analysis and

quantitative synthesis. Studies vary in whether they include soft tissue injuries alone or focus on skeletal fractures, whether they capture all maxillofacial injuries or only those requiring surgical intervention, and whether they employ prospective or retrospective designs with varying completeness of data capture. These methodological variations create challenges in synthesizing findings and may explain some observed differences across studies that may reflect methodology rather than true epidemiological differences.

The concentration of available research in a limited number of countries, particularly Nigeria, South Africa, Kenya, and Tanzania, constrains generalizability to other African nations and regions. Large areas of Central Africa, the Sahel region, and smaller African nations remain essentially unstudied regarding maxillofacial trauma epidemiology. Whether patterns observed in well-studied countries apply to these understudied populations remains uncertain, though the diversity observed even among studied countries suggests caution in extrapolating findings too broadly. The underrepresentation of francophone African countries in English-language medical literature may create geographic biases in evidence availability.

The temporal span of included studies, covering publications from 2010-2024, encompasses a period of rapid change in African transportation systems including dramatic motorcycle proliferation, increasing motorization, road infrastructure development, and evolving healthcare capabilities. Findings from earlier studies may not reflect current situations, though the scarcity of research from some countries means that older data may represent the only available evidence. The capacity to assess temporal trends remains limited by inconsistent study methodologies and changing healthcare catchment populations over time.

The quality of available evidence varies substantially, with many studies characterized by relatively small sample sizes, single-institution designs, incomplete follow-up, and limited control for confounding factors. While quality assessment was conducted, the overall evidence base must be recognized as providing primarily descriptive epidemiology with limited causal inference capacity. The absence of rigorous intervention studies evaluating prevention strategies or comparing treatment approaches in African populations means that recommendations rely heavily on evidence from other contexts with uncertain applicability to African settings.

The focus on maxillofacial injuries specifically, while enabling detailed examination of this injury category, necessarily constrains broader understanding of road traffic injury patterns and may not capture trade-offs and synergies with other injury types. Prevention strategies that reduce maxillofacial injuries might simultaneously affect or be affected by interventions targeting other injury types, creating system-level complexities not fully explored in this injury-specific analysis.

13. Future Research Directions

The substantial knowledge gaps identified through this analysis indicate clear priorities for future research that could meaningfully advance understanding and inform more effective prevention and treatment strategies. Population-based injury surveillance systems capturing comprehensive road traffic injury data with appropriate denominators represent a foundational need for epidemiological research and policy development. Countries should prioritize establishment of trauma registries at major hospitals that systematically capture injury circumstances, patient characteristics, treatment provided, and outcomes with standardized data elements enabling cross-facility comparison and quality improvement. Integration of police crash reports, hospital records, and death registration data through unique identifiers would enable more complete ascertainment and reduce underreporting that currently characterizes African road traffic injury statistics.

Longitudinal cohort studies following maxillofacial trauma survivors over extended periods to assess functional recovery, quality of life, return to work, long-term complications, and healthcare utilization would address critical knowledge gaps regarding outcomes that extend beyond acute hospital discharge. Current evidence focuses overwhelmingly on immediate injury patterns and acute treatment with minimal data on long-term outcomes that likely determine the true burden of these injuries on individuals, families, and societies. Prospective cohort designs with systematic follow-up protocols, standardized outcome instruments, and adequate sample sizes could substantially enhance understanding of factors predicting favorable versus poor long-term outcomes.

Comparative effectiveness research evaluating different treatment approaches for maxillofacial fractures in African populations would provide evidence to guide clinical decision-making currently based primarily on surgeon preference, resource availability, and extrapolation from Western literature. Well-designed studies comparing outcomes between open reduction internal fixation versus closed reduction techniques, different fixation materials, timing of intervention, and adjunctive therapies could identify approaches optimizing outcomes within resource constraints characteristic of African healthcare settings. Economic evaluations incorporating both effectiveness and cost data would enable value-based decision-making and resource allocation.

Implementation research examining barriers and facilitators to adoption of evidence-based prevention strategies would inform more effective intervention design and scale-up. While evidence regarding effective prevention interventions exists from other contexts, understanding factors affecting implementation success in African settings remains limited. Research exploring optimal enforcement strategies, behavior change communication approaches, community engagement methods, and policy levers that achieve population-level impacts would substantially advance prevention practice. Mixed-methods research incorporating quantitative outcome assessment and qualitative exploration of implementation processes, contextual factors,

International Journal of Dental Sciences & Research

and stakeholder perspectives would provide actionable insights for program designers and policy makers.

Health systems research examining capacity, quality, and equity in maxillofacial trauma care across African healthcare systems would identify system strengthening priorities and inform resource allocation. Studies mapping geographic distribution of specialized surgical capacity, assessing quality of care through systematic audit, identifying financial and non-financial barriers to care access, and evaluating innovative service delivery models could guide efforts to strengthen trauma care systems. Particular attention to emergency medical services development, referral system effectiveness, and strategies for extending specialized care access to rural and underserved populations would address critical gaps affecting outcomes.

Risk factor research employing robust epidemiological designs with adequate control for confounding would strengthen causal inference regarding modifiable determinants of injury occurrence and severity. Case-control studies comparing exposure patterns between injured and non-injured populations, prospective cohort studies following at-risk populations, and natural experiment evaluations of policy changes or interventions would provide stronger evidence than currently available from descriptive case series. Particular research priorities include understanding alcohol involvement more precisely through systematic biological testing, quantifying effects of helmet quality and wearing patterns beyond simple usage versus non-usage, and assessing interactions among multiple risk factors.

Biomechanical research examining injury mechanisms, protective equipment effectiveness, and vehicle crashworthiness under conditions characteristic of African crashes would inform prevention strategies and technology development. Crash reconstruction studies analyzing real-world crashes to understand energy transfer, injury causation sequences, and potential prevention opportunities could identify engineering solutions. Helmet testing under tropical conditions addressing comfort and usage barriers while maintaining protective efficacy could enhance acceptability. Vehicle design research considering mixed traffic conditions and predominant crash types in African settings might identify safety enhancements beyond those prioritized in high-income countries.

Economic research quantifying comprehensive costs of road traffic injuries including direct medical costs, productivity losses, caregiver burden, and broader economic impacts would strengthen the case for prevention investment and inform priority setting. Benefit-cost analyses of specific prevention interventions adapted to African cost structures and effectiveness levels would enable evidence-based resource allocation. Catastrophic expenditure studies examining financial burden on affected families and barriers to care access created by costs would inform social protection policy and health financing reform.

Psychological and social research examining the psychosocial impacts of maxillofacial injuries, factors influencing psychological recovery, and effective support interventions would address the

currently neglected mental health dimensions of trauma. Studies assessing prevalence and risk factors for post-traumatic stress disorder, depression, and anxiety following maxillofacial trauma would quantify this burden. Research evaluating peer support interventions, psychological therapies, and integrated care models addressing both physical and mental health needs could identify approaches to comprehensive recovery support.

Pediatric-focused research examining the particular patterns, risk factors, and outcomes of maxillofacial injuries in children and adolescents would inform age-appropriate prevention and treatment strategies. Children face distinct injury risks as pedestrians and vehicle passengers, may have different injury patterns reflecting developmental anatomy, and require specialized treatment approaches considering growth and development. Dedicated research attention to pediatric maxillofacial trauma remains limited in African literature despite children representing approximately 15-25% of cases.

Gender-specific research exploring differences in injury circumstances, risk factors, healthcare seeking, and outcomes between male and female victims would inform more nuanced understanding beyond simple incidence comparisons. Qualitative research examining gendered mobility patterns, risk perceptions, barriers to safety equipment usage, and experiences navigating healthcare systems could reveal intervention opportunities specific to each gender's circumstances.

14. Conclusion

Road traffic accidents represent a critical and growing public health challenge across the African continent, generating substantial burden of maxillofacial injuries that impose profound impacts on individuals, families, healthcare systems, and broader societal development. This comprehensive multi-country analysis synthesizes available evidence demonstrating that RTAs constitute the predominant cause of maxillofacial trauma across diverse African populations, accounting for 50-70% of cases presenting to specialized facilities and affecting primarily young adult males during their most economically productive years. The epidemiological patterns reveal mandibular fractures as the most common skeletal injury, frequent occurrence of multiple fractures reflecting high-energy trauma mechanisms, and substantial rates of associated injuries particularly traumatic brain injury that fundamentally shape clinical management and outcomes.

The distinctive features of maxillofacial trauma in African contexts compared to high-income countries reflect the continent's unique transportation landscape characterized by vulnerable road users including motorcyclists and pedestrians, absent safety equipment usage particularly helmet non-compliance exceeding 70% in most settings, poor vehicle safety standards with predominance of older vehicles lacking modern protection features, and inadequate road infrastructure with mixed traffic conditions exposing vulnerable users to severe injury risks. These contextual factors create injury patterns, risk profiles, and prevention opportunities that

International Journal of Dental Sciences & Research

differ substantially from those in developed countries, necessitating locally adapted strategies rather than simple importation of interventions designed for different risk environments.

The healthcare system analysis reveals critical gaps across the trauma care continuum from prehospital emergency response through acute specialized treatment to rehabilitation that substantially compromise outcomes and perpetuate injury burden. The near-absence of organized emergency medical services results in prolonged delays and missed opportunities for early intervention. The severe shortage and geographic concentration of specialized maxillofacial surgical expertise creates profound disparities in care access between urban and rural populations. The frequent inability of patients to afford treatment costs transforms injuries into sources of catastrophic financial burden while simultaneously resulting in delayed or abandoned treatment with consequent poor outcomes. These system deficiencies demand strategic investments addressing workforce development, infrastructure enhancement, equipment and supply systems, and financial risk protection.

The evidence base regarding effective prevention strategies provides clear roadmap for intervention though implementation faces substantial challenges in African contexts. Comprehensive approaches combining legislation, enforcement, engineering solutions, and education targeting modifiable risk factors including helmet usage, speed, alcohol impairment, and vehicle safety offer realistic pathways to substantial injury reduction. International experience demonstrates that sustained commitment to evidence-based prevention can achieve dramatic reductions in road traffic injuries over time. African countries achieving progress through targeted initiatives demonstrate that meaningful improvements remain achievable even with resource constraints when political commitment, strategic planning, and adequate resource allocation align around evidence-based priorities.

The concentration of maxillofacial injuries among young adults during peak productive years creates profound economic implications extending beyond healthcare costs to encompass lost productivity, caregiver burden, and broader development impacts. The preventability of most road traffic injuries through known effective interventions creates both economic and moral imperatives for action. Reframing road traffic injury prevention as an essential development priority rather than solely a health sector concern may facilitate political commitment and resource mobilization necessary for sustained progress. The economic returns on prevention investment, typically exceeding 3:1 benefit-cost ratios, provide compelling rationale for prioritizing interventions even in resource-constrained environments.

Moving forward, African countries must prioritize multi-sectoral collaboration bringing together health, transport, police, judiciary, and civil society sectors in coordinated prevention efforts. Political leadership at highest levels providing vision, resource commitment, and accountability proves essential for sustained progress. Investment in data systems enabling evidence-based policy development, surveillance of progress, and quality improvement must underpin

International Journal of Dental Sciences & Research

prevention and treatment efforts. Healthcare system strengthening addressing the critical gaps in emergency response, specialized surgical care, and rehabilitation services requires sustained resource commitment and workforce development. Research investments building the evidence base regarding African-specific injury patterns, risk factors, intervention effectiveness, and healthcare system performance would substantially enhance policy and practice.

The substantial and growing burden of maxillofacial injuries from road traffic accidents across Africa demands urgent, comprehensive, and sustained action at individual, community, institutional, and policy levels. The evidence clearly demonstrates both the magnitude of the problem and the availability of effective solutions. The challenge ahead lies not in identifying what needs to be done but in mobilizing political will, allocating necessary resources, ensuring sustained implementation, and maintaining commitment over the extended timeframes required to achieve population-level impacts. The human, social, and economic costs of inaction grow increasingly unacceptable as motorization accelerates without corresponding safety improvements. Africa's development aspirations cannot be fully realized while road traffic injuries continue claiming the lives and health of the continent's most productive citizens. The time for decisive action has arrived.

References

- Adeloye, D., Thompson, J. Y., Akanbi, M. A., Azuh, D., Samuel, V., Omoregbe, N., & Ayo, C. K. (2016). The burden of road traffic crashes, injuries and deaths in Africa: A systematic review and meta-analysis. *Bulletin of the World Health Organization*, 94(7), 510-521A. <https://doi.org/10.2471/BLT.15.163121>
- Adeyemo, W. L., Ladeinde, A. L., Ogunlewe, M. O., & James, O. (2005). Trends and characteristics of oral and maxillofacial injuries in Nigeria: A review of the literature. *Head & Face Medicine*, 1(1), 7. <https://doi.org/10.1186/1746-160X-1-7>
- Akinbami, B. O., & Akadiri, O. A. (2014). A review of jaw fractures treated at a tertiary hospital in Nigeria. *Journal of Maxillofacial and Oral Surgery*, 13(3), 227-233. <https://doi.org/10.1007/s12663-012-0415-5>
- Al-Ahmady, H. H., Shawky, H. M., Omran, A. M., Fahmy, A. M., & Abdelaziz, A. M. (2018). Analysis of 348 mandibular fracture cases at a tertiary care hospital. *Journal of Craniofacial Surgery*, 29(2), 535-540. <https://doi.org/10.1097/SCS.0000000000004208>
- Bataineh, A. B. (1998). Etiology and incidence of maxillofacial fractures in the south of Jordan. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology*, 86(1), 31-35. [https://doi.org/10.1016/S1079-2104\(98\)90147-9](https://doi.org/10.1016/S1079-2104(98)90147-9)

International Journal of Dental Sciences & Research

- Boffano, P., Roccia, F., Zavattero, E., Dediol, E., Uglešić, V., Kovačić, Ž., ... & Konstantinović, V. S. (2015). European Maxillofacial Trauma (EURMAT) project: A multicentre and prospective study. *Journal of Cranio-Maxillofacial Surgery*, 43(1), 62-70. <https://doi.org/10.1016/j.jcms.2014.10.011>
- Chalya, P. L., Mabula, J. B., Ngayomela, I. H., Kanumba, E. S., Chandika, A. B., Giiti, G., ... & Balumuka, D. D. (2011). Motorcycle injuries as an emerging public health problem in Mwanza City, north-western Tanzania. *Tanzania Journal of Health Research*, 13(4), 214-221. <https://doi.org/10.4314/thrb.v13i4.1>
- Claassen, D. C., & Snyders, J. J. (2005). Maxillofacial trauma at a South African academic trauma centre. *South African Dental Journal*, 60(3), 110-114.
- Donkor, P., Bankas, D. O., Agbenorku, P., Plange-Rhule, G., & Ansah, S. K. (2009). Motorcycle helmet use in Kumasi, Ghana. *Injury Prevention*, 15(4), 248-251. <https://doi.org/10.1136/ip.2008.021261>
- Fasola, A. O., Nyako, E. A., Obiechina, A. E., & Arotiba, J. T. (2003). Trends in the characteristics of maxillofacial fractures in Nigeria. *Journal of Oral and Maxillofacial Surgery*, 61(10), 1140-1143. [https://doi.org/10.1016/S0278-2391\(03\)00671-2](https://doi.org/10.1016/S0278-2391(03)00671-2)
- Gopalakrishnan, K., & El Masry, M. A. (2008). Maxillofacial trauma in the United Arab Emirates: A retrospective study. *Journal of Oral and Maxillofacial Surgery*, 66(6), 1231-1238. <https://doi.org/10.1016/j.joms.2008.01.052>
- Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G., & Kobusingye, O. C. (2007). The impact of traumatic brain injuries: A global perspective. *NeuroRehabilitation*, 22(5), 341-353. <https://doi.org/10.3233/NRE-2007-22502>
- Kamulegeya, A., Lakor, F., & Kabenge, K. (2009). Oral maxillofacial fractures seen at a Ugandan tertiary hospital: A six-month prospective study. *Clinics*, 64(9), 843-848. <https://doi.org/10.1590/S1807-59322009000900004>
- Kieser, J., Stephenson, S., Liston, P. N., Tong, D. C., & Langley, J. D. (2002). Serious facial fractures in New Zealand from 1979 to 1998. *International Journal of Oral and Maxillofacial Surgery*, 31(2), 206-209. <https://doi.org/10.1054/ijom.2002.0207>
- Kitai, I., Grobusch, M. P., & Scolnik, D. (2013). Road traffic crashes in Botswana: The burden of injury, death, and hospital stay. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 107(7), 449-451. <https://doi.org/10.1093/trstmh/trt035>

International Journal of Dental Sciences & Research

- Laski, R., Ziccardi, V. B., Broder, H. L., & Janal, M. (2004). Facial trauma: A recurrent disease? The potential role of disease prevention. *Journal of Oral and Maxillofacial Surgery*, 62(6), 685-688. <https://doi.org/10.1016/j.joms.2004.02.003>
- Lee, K. (2008). The etiology and pattern of facial bone fractures. *Maxillofacial Plastic and Reconstructive Surgery*, 30(2), 101-110.
- Leles, J. L., dos Santos, É. J., Jorge, F. D., da Silva, E. T., & Leles, C. R. (2010). Risk factors for maxillofacial injuries in a Brazilian emergency hospital sample. *Journal of Applied Oral Science*, 18(1), 23-29. <https://doi.org/10.1590/S1678-77572010000100006>
- Malara, P., Malara, B., & Drugacz, J. (2006). Characteristics of maxillofacial injuries resulting from road traffic accidents: A 5 year review of the case records from Department of Maxillofacial Surgery in Katowice, Poland. *Head & Face Medicine*, 2(1), 27. <https://doi.org/10.1186/1746-160X-2-27>
- Mock, C., Quansah, R., Krishnan, R., Arreola-Risa, C., & Rivara, F. (2004). Strengthening the prevention and care of injuries worldwide. *The Lancet*, 363(9427), 2172-2179. [https://doi.org/10.1016/S0140-6736\(04\)16510-0](https://doi.org/10.1016/S0140-6736(04)16510-0)
- Motamedi, M. H. K. (2003). An assessment of maxillofacial fractures: A 5-year study of 237 patients. *Journal of Oral and Maxillofacial Surgery*, 61(1), 61-64. <https://doi.org/10.1053/joms.2003.50049>
- Munante-Cardenas, J. L., Olate, S., Asprino, L., de Albergaria Barbosa, J. R., de Moraes, M., & Moreira, R. W. (2010). Pattern and treatment of facial trauma in pediatric and adolescent patients. *Journal of Craniofacial Surgery*, 21(5), 1454-1457. <https://doi.org/10.1097/SCS.0b013e3181ec6aa8>
- Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., ... & Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. *The Lancet*, 380(9859), 2197-2223. [https://doi.org/10.1016/S0140-6736\(12\)61689-4](https://doi.org/10.1016/S0140-6736(12)61689-4)
- Mwaniki, D. L., & Kabiru, E. W. (2018). Motorcycle taxi services and road safety in urban areas: A case study of Nairobi, Kenya. *Journal of Transport & Health*, 8, 206-215. <https://doi.org/10.1016/j.jth.2017.12.005>
- Nwachukwu, D. C., Nwashilli, N., Somefun, O. A., & Osunde, O. D. (2013). Motorcycle-related maxillofacial injuries in a semi-urban town in Nigeria. *Nigerian Journal of Plastic Surgery*, 9(1), 14-17.

International Journal of Dental Sciences & Research

- Nyachieo, D. O., Kang'ethe, S., & Mutai, J. (2013). Road traffic injuries in Kenya: A survey of commercial motorcycle operators in urban centers. *East African Medical Journal*, 90(3), 89-94.
- Oginni, F. O., Ugboko, V. I., Ogundipe, O., & Adegbekingbe, B. O. (2006). Motorcycle-related maxillofacial injuries among Nigerian intracity road users. *Journal of Oral and Maxillofacial Surgery*, 64(1), 56-62. <https://doi.org/10.1016/j.joms.2005.09.027>
- Olasoji, H. O., Tahir, A., & Arotiba, G. T. (2002). Changing picture of facial fractures in northern Nigeria. *British Journal of Oral and Maxillofacial Surgery*, 40(2), 140-143. <https://doi.org/10.1054/bjom.2001.0743>
- Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A. A., Jarawan, E., & Mathers, C. (Eds.). (2004). *World report on road traffic injury prevention*. World Health Organization. <https://apps.who.int/iris/handle/10665/42871>
- Rajendra, P. B., Mathew, T. P., Agrawal, A., & Kumar, D. (2009). Characteristics of associated craniofacial trauma in patients with head injuries: An experience with 100 cases. *Journal of Emergencies, Trauma and Shock*, 2(2), 89-94. <https://doi.org/10.4103/0974-2700.50742>
- Riaz, N., Chatha, A. A., & Hussain, S. (2008). Frequency of various treatment modalities in mandibular fractures. *Pakistan Oral & Dental Journal*, 28(2), 219-222.
- Roccia, F., Boffano, P., Bianchi, F. A., Gerbino, G., & Gallesio, C. (2013). An analysis of 711 victims of interpersonal violence to the face. *Journal of Craniomaxillofacial Surgery*, 41(7), e199-e202. <https://doi.org/10.1016/j.jcms.2013.01.026>
- Samieirad, S., Abutorabzade, M. R., Tohidi, E., Shaban, B., Khalife, H., Hashemipour, M. A., & Kalantari, A. (2020). Maxillofacial fracture epidemiology and treatment plans in the northeast of Iran: A retrospective study. *Medicina Oral, Patología Oral y Cirugía Bucal*, 25(6), e779-e786. <https://doi.org/10.4317/medoral.23773>
- Sharma, P., Arora, A., Valiathan, A., Sivakumar, J. S., & Bhatt, D. C. (2014). Prevalence of traumatic dental injuries to anterior teeth in 11-13 year old school children in various cities of Gujarat, India. *Contemporary Clinical Dentistry*, 5(4), 510-514. <https://doi.org/10.4103/0976-237X.142821>
- Subhashraj, K., Nandakumar, N., & Ravindran, C. (2007). Review of maxillofacial injuries in Chennai, India: A study of 2748 cases. *British Journal of Oral and Maxillofacial Surgery*, 45(8), 637-639. <https://doi.org/10.1016/j.bjoms.2007.03.012>

International Journal of Dental Sciences & Research

- Thoren, H., Iso-Kungas, P., Iizuka, T., Lindqvist, C., & Tornwall, J. (2009). Changing trends in causes and patterns of facial fractures in personal assault. *Journal of Oral and Maxillofacial Surgery*, 67(12), 2729-2736. <https://doi.org/10.1016/j.joms.2009.07.025>
- van As, A. B., van Hoving, D. J., Gavhi, F., Nyatsanza, C., & Van Schalkwyk, J. (2012). Prehospital emergency services for children in African and Asian low- and middle-income countries. *Southern African Journal of Critical Care*, 28(1), 4-7.
- van Beeck, E. F., Larsen, C. F., Lyons, R. A., Meerding, W. J., Mulder, S., & Essink-Bot, M. L. (2007). Incidence and costs of injuries in The Netherlands. *European Journal of Public Health*, 17(3), 272-278. <https://doi.org/10.1093/eurpub/ckl231>
- Waikakul, A., Veeravagu, A., Darakorn, S., & Sookpotarom, P. (1995). Etiology of maxillofacial injuries: 12-year review. *Journal of the Medical Association of Thailand*, 78(9), 485-490.
- World Health Organization. (2015). *Global status report on road safety 2015*. WHO Press.